Structured Information Management for Large Defence Projects

Engineering Corporate Knowledge

William P. Hall, PhD
Integrated Logistic Support
ANZAC Ship Project
Williamstown, Vic.
bill.hall@tenix.com

Overview:

Assembling corporate information into products

- Documentation management issues for large defence/industry projects
- What is structured information management and why does the world need it?
- Tenix's implementation project
 - What we got
 - 80% reduction in number of documents managed
 - 98% reduction in documents delivered
 - further 50-70% reduction in text down the line
 - How we got it

Background: ANZAC Ship Project

- Project to design, build & support 10 frigates
 - 1989 \$A 5 BN
- Tenix a privately owned company
- Fixed price contract including support
- I have filled document production and content management roles from the time the contract was signed covering the entire project cycle

Documentation cycle for a large project (prime contractor's view)

Documentation system goals

- Most corporate knowledge is recorded in documents not data
- Product goals
 - Correct and up-to-date
 - Consistent and legible
 - Available to who needs it, when needed
- Process goals
 - Faster (minimise cycle time)
 - Better (improve/assure quality)
 - Cheaper (reduce labour)
- Automation can help

Key vision: Documentation transforms data and text into knowledge and power

Key vision (2)

- Unstructured data or text has no meaning to a computer
- Document structure encodes context and semantics
- Content management helps with awareness and speeds decision and action = knowledge management

Structure text, don't format it

- Focus on document structure and content, not paper format
- Author documents with a defined and controlled structural logic.
 - Unique labels
 - Consistent rules
 - Authors create text and structure, not formats
 - Computer systems, not authors, provide formats
 - Computer systems can process structured documents to add value like databases add value to tabular data.

Use markup languages to encode structure not formats

- Tools to engineer documentary knowledge
 - Input material: knowledge expressed in text
 - Eng. standards: SGML (ISO 8879 1986), XML, etc.
 - Requires development of document designs (DTDs)
 - Output format specifications
 - Text processing (machine) tools produce/maintain structured text according to engineering standard
 - Parsers
 - Editors
 - Formatters/publishers
 - Processing languages
 - Content managers/databases

Tenix's history with structured information management

Trial solutions for maintenance documents

- WordPerfect merge tables for maintenance cards (1992-2000)
 - Merge tables provided "structure" from the outset
 - Produced more than 20 different outputs from "single source"
 - Delivered data files and electronic documents to Client's Oracle-based ANZAC Maintenance + Planning System (AMPS)
 - Validated data used for AMPS relational links automatically
 - Information was structured but content not controlled
 - Versioning, release, applicability, effectivity all manual
 - Data delivery capability at risk from obsolete host application

Trial solutions

- Tenix explored several alternatives to replace WordPerfect
 - SGML for equipment overhaul specifications (1994→)
 - Relational database solution for amphibious landing ship maintenance routines (1996-1997)
 - MS-based reworks of WordPerfect technology
- They weren't good enough

The proper answer

- Provide structured authoring and content management
 - Implement concept of structured documents
 - Semantic markup (SGML, XML)
 - Hyperlinks (live links that turn information into knowledge) - HTML, SGML, XML)
 - Manage documents (container status & versioning)
 - Manage content (the contained knowledge elements)
- ANZAC maintenance routines a good prototype for many corporate needs
- ♦ Help transform: Data → Knowledge → Power

1998 3 Stage SGML R&D Project

Tenix funded a year-long R&D program to evaluate structured authoring technologies

- 1. Develop preliminary requirements & survey technology
 - SAIC/SDSC evaluation http://www.sdsc.edu/DOCT/Publications/b4-1/b4-1.html
 - Allette Systems provided advice & assistance in developing internal business case to proceed
- 2. Develop detailed SOR and draft contract
 - Initially preferred suppliers helped analyse requirements
 - Ensured we expressed our requirements in suppliers language
- 3. Two rounds of bidding against RFQ (not RFT)
 - CSIRO Mathematical & Information Sciences' Text Information Management reviewed process and technical evaluation

What we decided we needed:

- Hold data in non-proprietary format (SGML/XML)
- Validate critical data against master sources
- Manage applicability to configuration items
- Link document effectivity to engineering change orders
- Maintain client-specific languages
- Register and link to source documents
- Link deliverable text elements to source documents
- Manage workflow processes
- Manage and reuse content objects (e.g., graphics)
- Manage and reuse document components (e.g., text)
- Data conversion from WordPerfect to SGML
- Produce required deliverables (unique requirements)

R&D review of document mgmt applications

- Architectural considerations:
 - Repository (relational vs object vs structured)
 - Extensibility (DIY?)
 - Supportability (DIY?)
- Other considerations:
 - RISK minimisation
 - Licensing and implementation cost
 - Support and maintenance cost

Final short list:

- Short list choice between two generic SGML content management systems
 - low risk 2nd generation US vs developmental 4th generation local
 - dependence on overseas IP vs local support and IP
 - overseas cost components vs 100% \$A

What did we get?

Our choice: SIM

RMIT's Structured Information Manager

- Academic excellence + interesting client list → world-wide state of the art repository technology
- A very credible implementation team
- Acceptable risk mitigation
 - Fixed price (but no ownership of bespoke IP)
 - Two stage implementation (80:20 rule)

What did we get?

- XML-based content repository server
- Web and access security admin server
- Integral Application Construction Environment (ACE)
- Tenix's document & content management extensions
- No third-party software anywhere!

BIG wins from SIM Release 1

- Delivered class documents 20/10/2000
 - Total doc management requirement as at Ship 5 delivery:
 - 10,000 routines \rightarrow 1,800 = >

80% reduction in docs

- Ship 5 delivery requirement:
- 40 new routines not 2000! =

98% reduction in delivery

And we wern't too bad to start with

How did we do it?

- How was the reduction achieved?
 - Item applicability to configuration items
 - Side-by-side edit navy specific language (RAN, RNZN)
 - Effectivity link to specific Engineering Change

Other release 1 benefits

- Low cost deployment
 - Own PC with Web or intranet access
 - Default web browser (only tool needed to administer SIM or review & annotate documents)
 - SGML/XML compliant editor to draft/edit procedure text
 - No IS support required
- Data validation on Check In/Check Out
- Source data management
 - Source registry
 - Source repository
 - 2-way links with SGML comments

More release 1 benefits

- Workflow management system
 - All functions performed over intranet web
 - With slight mod to SIM implementation, participants could work anywhere in the world (World Wide Web)
- Minimal author training (no prior experience)
 - Workflow role(s)
 - Document structure rules
 - Data/text entry
 - Authors see but have no control over print formats

One day of formal training
One week to full productivity

SIM Release 2 - early in the new year

- Component reuse
 - Auto detection of similar elements
 - Inheritance, detailed tracking of changes at element level
- ◆ 50% 70% more reduction in volume of text to author/manage
- Ensures consistency of text usage

SIM Release 2 - early in the new year (2)

- Document and component versioning
 - SIM 1 retains doc versions in repository
 - SIM 2 will control versions down to individual elements
 - Secure/traceable version/release control
 - Auditable change management
- Annotated links, changes & elements
- Additional toolkit

Project success factors

Strategies that worked (1)

- End-users (doco people) managed project
- Used appropriate outside consultants (including suppliers) to help understanding & check work
- If you don't know more about technology than suppliers do RFQ not RFT
- Specify what you need, not how to achieve it
- Check supplier financials and market position
- If developer is overseas use reputable local integrator as supplier, not the developer

Strategies that worked (2)

- Negotiate from a commercially realistic draft contract
 - The biggest risk may be to not start the project
- Manage risk above all else
 - Negotiate fixed price
 - Solve potential show-stoppers first
 - Prove major concepts early
 - Know your priorities and apply the 80:20 rule
- Phase work so each phase scores a win